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1 Introduction

The purpose of this note is to provide exposition for a proof of the statement in
the title. This idea, that arbitrary cohomology classes (of high enough degree)
of a finite group G can be trivialized in a finite group extension, has been known
to experts for some time. In particular, this problem has been the subject of
discussion in the physics literature as in, for example,[Tac] which serves as the
primary inspiration for this note. The author also points to [WWW] which pro-
vides a more direct physical argument for a similar problem. I won’t attempt to
say too much about the physical interpretation of this statement; the interested
reader is encouraged to check those two sources [Tac; WWW].

The proof I will present begins with a slight generalization of the one de-
scribed in [Tac, §2.7]. Motivated by the physical interpretation, the result
in [Tac] is stated in terms of n-cocycles of G with n ≥ 2 and coefficients in
U(1) ⊂ C×, taken as a trivial G-module. The argument presented, however,
works just as well for coefficients in more general G-modules, so long as they
are torsion as abelian groups. The technique is quite elementary, with roots in
[HS], the paper in which Hochschild and Serre introduced introduced the spec-
tral sequence we’ll encounter in the proof. For those more comfortable with the
machinery of spectral sequences, there is a more high-tech version of this same
proof given in Lemma 4.2.3 of [Déc]. I go a bit farther in this note by showing
that any n-cocycle of G with coefficients in any G-module can be trivialized,
provided n ≥ 3.

In the next section, I’ll go over some mathematical background. In partic-
ular, group cohomology is computed via a certain “derived functor”. Derived
functors often appear in homological algebra, but to me the way they are usually
constructed feels quite unmotivated. I’ll first attempt to slightly demystify this
notion by pointing to their homotopical nature, as captured by the formalism
of model categories. Then I’ll give some definitions about group cohomology
and recall certain necessary facts about the Lyndon-Hochschild-Serre spectral
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sequence associated to an extension of a finite group G by an abelian kernel. In
the third section, I’ll present the results, as well as the proof itself.

2 Cohomological background

There’s no shortage of things to say about group cohomology. Indeed, it’s
a concept that leads itself to interpretations in a variety of settings. As a
consequence, there are many equivalent ways to define the cohomology of some
group G with coefficients in some module M . The most direct definition is in
terms of a derived functor, so I’ll first spend some time saying what those are,
as well as a bit about why they are what they are. Readers familiar with this
story, and the standard normalized bar complex are free to skip to section 2.3.

2.1 Chain homotopy theory

As I’ll show in the next section, the cohomology of a group G with coefficients
in some G-module is given by a certain derived functor. When I initially learned
about cohomology, and derived functors more generally, they seemed quite ar-
cane and computing them felt like following a random sequence of steps. The
purpose of this section is to slightly demystify this concept by highlighting their
homotopical nature. In modern language a “homotopy theory” refers to (equiv-
alence classes of) (∞, 1)-categories. These can be presented 1-categorically via
model categories, which is the context I’ll use.

A model category consists of a complete and cocomplete 1-category M to-
gether with three distinguished classes of morphisms called weak equivalences,
fibrations, and cofibrations. These must then satisfy a bunch of axioms I won’t
spell out here (see e.g. [Rie; DS; Hov]), but that seek to abstract the ho-
motopy theory studied in algebraic topology. In particular, it’s common to
consider spaces and continuous maps only “up to homotopy”, and this intuition
is captured by the homotopy category associated to a model category. This is
obtained by formally inverting (i.e. localizing at) the weak equivalences. For a
model category M with weak equivalences W, I’ll denote its canonical localiza-
tion functor by locM : M → M

[
W−1

]
:= HoM. I will also denote the fibrant

and cofibrant replacement functors by Fib and Cof respectively, and they come
with the following natural isomorphisms.

M HoM M HoM

Cof

locM

Fib

locM

≀ ≀

Let F : M → K be some (arbitrary) functor between model categories. F
may or may not preserve the weak equivalences, but if it does, then it also
induces a functor between the corresponding homotopy categories. If F doesn’t
preserve weak equivalences, then we can try to universally approximate it by
one that does. This is the job of a derived functor.
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Definition 2.1 If they exist, the total right derived functor RF of F is a
left Kan extension while the total left derived functor LF of F is a right Kan
extension, both extending locK ◦F along locM. This is summarized by the
following diagrams.

M HoK M HoK

HoM HoM

locK ◦F

locM

locK ◦F

locMRF LF

There are certain functors, called left (resp. right) Quillen functors, that always
admit left (resp. right) derived functors. In particular, A cocontinuous functor
that preserves cofibrations as well as the subset of cofibrations that are weak
equivalences is a left Quillen functor, while a continuous functor that preserves
fibrations in the same manner is a right Quillen functor. By Corollary 4.2.4 of
[Rie], we may compute these derived functors as LF = F ◦ Cof and RF =
F ◦ Fib. These are well-defined functions on objects since a (co)fibrant object
is, in particular, an object of M. On morphisms, these are only well-defined up
to a weak equivalence, hence why they define functors to HoK.

Now consider some abelian category C. The category Ch(C) of chain com-
plexes internal to C has two full subcategories given by complexes bounded
above and below respectively. Since we can identify any chain complex with a
cochain complex by simply reflecting the indices, i.e. by X• 7→ X−•, I’ll write
Ch•(C) for chain complexes bound below and Ch•(C) for chain complexes bound
above, which are the same as cochain complexes bound below. These have some
standard and well-studied model structures, given as follows.

Facts 2.2 Let C be an abelian category, Ch•(C), and Ch•(C) the (co)chain com-
plexes in C bound from below.

1. The projective model structure on C, defined on Ch•(C), is given by:

• The fibrations are epimorphisms Xn ↠ Yn in each degree.

– The unique chain map X• → 0• is a fibration, thus every object
is fibrant.

• The cofibrations are monomorphisms Xn ↪→ Yn ↠ Pn with projective
cokernels in each degree.

– The unique chain map 0• → X• is a cofibration if and only if
each Xn is projective.

• Right exact functors F : C → D induce left Quillen functors with
respect to the projective model structure.

2. The injective model structure on C, defined on Ch•(C), is given by:

• The fibrations are epimorphisms Jn ↪→ Xn ↠ Y n with injective
kernels in each degree.
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– The unique cochain map X• → 0• is a fibration if and only if
each Xn is injective.

• The cofibrations are monomorphisms Xn ↪→ Y n in each degree.

– The unique cochain map 0• → X• is a cofibration, thus every
object is cofibrant.

• Left exact functors F : C → D induce right Quillen functors with
respect to the injective model structure.

3. The weak equivalences in both model structures are quasi-isomorphisms,
Q. These are (co)chain maps inducing isomorphisms in (co)homology in
each degree. The derived categories of C are the homotopy categories.

D•(C) := Ch•(C)
[
Q−1

]
≃ Ch•(PC)

[
Q−1

]
D•(C) := Ch•(C)

[
Q−1

]
≃ Ch•(JC)

[
Q−1

]
where PC and JC are the full subcategories of projective and injective ob-
jects of C respectively.

The projective model structure is discussed in [DS, §7] in the context of C =
RMod for a ring R. The injective model structure for unbounded chain com-
plexes in RMod is discussed in [Hov, §2.3]. The nLab webpage [nLa] collects
many of these facts together in one place, along with a long list of references for
the interested reader.

In homological algebra, what one typically computes are what I’ll refer to as
nth derived functors. For example, the nth right derived functor RnF of a left
exact F : C → D is the following composition.

C Ch•(C) Ch•(JC)
[
Q−1

]
D•(D) DFib F Hn

where the embedding C ↪→ Ch•(C) is given by placing an object in degree
zero. Fibrantly replacing this complex gives precisely an injective resolution of
the object. The similar situation in the projective model structure leads to a
projective resolution of the object. After evaluating the total derived functor,
we then read off the its (co)homology objects. Anyway, I’ll conclude with some
well-known and important examples of derived functors.

Examples 2.3 Let C be a symmetric monoidal abelian category.

1. ⊗ : Ch(C×C) → Ch(Ab) is a right exact functor, and thus admits a (total)
left derived functor L⊗ with respect to the projective model structure on
Ch•(C×C) = Ch•(C)×Ch•(C). We then obtain the familiar L n⊗(X,Y ) =
TornC(X,Y ). Moreover, using the data available from the definitions, we
can build the following 2-cell.

Ch•(C)× Ch•(C) Ch•(C)

D•(C)× D•(C) D•(C)

⊗

locCofC loc CofC

L⊗

∼ ∼
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In particular, this shows that the cofibrant replacement functor CofC is lax
monoidal.

2. HomC : Ch(Cop × C) → Ch(Ab) is left exact and so admits a right de-
rived functor R HomC with respect to the injective model structure on
Ch•(Cop × C) = Ch•(C)op × Ch•(C). We then have Rn HomC(X,Y ) =
ExtnC(X,Y ). Since HomC is a bifunctor, we can choose to fix a variable
and R HomC(X,−)(Y ) ∼= R HomC(−, Y )(X) (Theorem 4.7.10 in [Sch]).
Since the injective model structure on Ch•(C)op is actually given by pro-
jective complexes in C, this has the advantage of letting us choose which
resolutions to use to use to compute Ext.

2.2 G-modules and cohomology

For starters, denoting the group ring of G by Z[G], a (left, say) G-module is
a (unital left) Z[G]-module in the usual sense of a module over a ring. This
is equivalent to the data of an abelian group M and a group homomorphism
G → AutAb(M). A G-linear map f : M → N between G-modules is an abelian
group homomorphism f such that, for all m ∈ M and g ∈ G, we have f(g ·m) =
g · f(m). These form the category GMod of G-modules. A G-module is trivial
if the action is given g · m = m for all g ∈ G and m ∈ M . Some important
examples of trivial G-modules are as follows.

Examples 2.4

1. Any abelian group A can be thought of as a trivial G-module, namely
trivG(A) = A with action g · a := a for all a ∈ A, g ∈ G.

2. If M is any G-module, there is a trivial sub G-module by taking invariants
under the G-action:

MG := {m ∈ M | g ·m = m, ∀g ∈ G}

3. If M is any G-module, there is a trivial quotient G-module by taking co-
invariants under the G-action:

MG :=
M

⟨g ·m−m⟩m∈M
g∈G

These examples are all functorial; trivG is an inclusion of categories Ab ↪→
GMod, with (−)G and (−)G being its right and left adjoints respectively. This
is depicted by the following diagram.

GMod Ab

(−)G

(−)G

trivG

⊣
⊣
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By abstract nonsense, since both Ab and GMod are abelian categories, (−)G

being a right adjoint functor implies it is left exact. By the further abstract
nonsense of section 2.1, since it’s a left exact functor, it admits a right derived
functor.

Definition 2.5 Let G be a group, and M some G-module. The nth cohomology
group of G with coefficients in M is the nth right derived functor Rn of (−)G.

Hn(G;M) := Rn(M)

Since (M)G ∼= HomG(Z,M), where Z has the trivial G-module structure, then
Hn(G;M) ∼= ExtnZ[G](Z,M).

As pointed out in Example 2.3.2, to compute ExtnZ[G](Z,M), I could proceed
via an injective resolution of M and HomG(Z,−), or a projective resolution of
the trivial G-module Z and HomG(−,M). This is where I make use of the
famous normalized bar resolution ZG•, which is a free resolution of Z. A basis
of ZGn is given by the symbols [g1| · · · |gn], for gi ∈ G\{1}. From this point on,
any computational details may be found in any standard reference, e.g. [Bro].
Here is a more operational definition of group cohomology.

Definitions 2.6 Let G be any group.

1. For any n ∈ N, Cn(G;M) is the group of normalized n-cochains of G in
M . These are functions f : G×n → M such that f(g1, . . . , gn) = 0 if any
gi = 1, and are obtained by Hom-ing the bar resolution into M .

HomG(ZGn,M) ∼= Cn(G;M)

φ 7→ φ([g1| · · · |gn])

2. For any n ∈ N, the resulting coboundary homomorphism δnG : Cn(G;M) →
Cn+1(G;M) is given by

(δnGf)(g1, . . . , gn+1) = g1 · f(g2, . . . , gn) + · · ·

+

n−1∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn) + · · ·

+ (−1)nf(g1, · · · , gn−1)

3. The kernel of the coboundary, ker(δnG) = Zn(G;M), is the group of
(normalized) n-cocycles of G in M . Similarly the image, im(δn−1

G ) =
Bn(G;M), is the group of (normalized) n-coboundaries G in M .

4. The nth cohomology group of G with coefficients in M may be computed
as the quotient group

Hn(G;M) =
Zn(G;M)

Bn(G;M)
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When the G-module M has a non-trivial G-action, then this is also known
as “twisted” group cohomology. From here out, I take G to be a fixed, but
arbitrary, finite group and all cochains are taken to be normalized. Beware that
when writing coboundary homomorphisms, I will often leave indices implicit.

Now let’s focus on the coefficients. For any fixed G-module M , the cochains
of G in M naturally form a graded abelian group, with grading given by the de-
gree of cochains. Since cohomology is defined degree-wise, this graded structure
then descends to cohomology, so H∗(G;M) =

⊕
n≥0 H

n(G;M). This graded
setting allows for more structure to be found. In particular, there is the following
lemma.

Lemma 2.7 The functor H∗(G;−) : GMod → AbN is lax monoidal. In partic-
ular, there is a natural map ∪ : H∗(G;M)⊗H∗(G;N) → H∗(G;M ⊗N).

Proof:
Recall that we compute a derived functor by computing the original functor on
a fibrant or cofibrant replacement. In this case, we are in the injective model
structure on Ch•(GMod)op, so in particular we have the following.

Hn(G;M) = ExtnZ[G](−,M)(Z)
= HomG(−,M) ◦ FibGModop(Z)
= HomG(−,M) ◦ Cofop

GMod(Z)

where I used that opposite of a model category gives another model category,
but where the fibrations and cofibrations have swapped roles. In particlar we
have FibGModop(Z) = Cofop

GMod(Z) = ZG•.
The trivial G-module Z is a trivial coalgebra in GMod. Specifically, Z⊗Z[G]

Z = Z ⊗Z Z ∼= Z, and so the identity map defines a coassociative comultiplica-
tion. Moreover, Example 2.3.1 implies that Cofop

GMod is oplax monoidal, and so
preserves coalgebras. Indeed, the bar resolution is a similarly trivial coalgebra.
This comes from the fact that the tensor product ZG• ⊗ ZG• is also a (projec-
tive) resolution of Z, together with Theorem I.7.5 of [Bro]. This latter states
that any two projective resolutions over the same module unique up to a unique
isomorphism in D•(GMod)op. Finally, in general if X ∈ C is a coalgebra in a
(enriched) monoidal category C, then the functor HomC(X,−) is lax monoidal.
□

In order to proceed, we need to make an explicit choice of chain map witness-
ing the (up to homotopy) trivial comultiplication of the bar resolution. A com-
mon choice is called the Alexander-Whitney chain map, and is defined degree-
wise (e.g. in [Bro, §5.1]) as follows.

∆n : ZGn −→
⊕

i+j=n

ZGi ⊗ ZGj

[g1| · · · |gn] 7→
n∑

k=0

[g1| · · · |gk]⊗ g1 · · · gk[gk+1| · · · |gn]
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Thus there’s a natural transformation C•(G;M)⊗C•(G;N) → C•(G;M ⊗N)
given by α⊗β 7→ α∪β := (α⊗β)◦∆•. Moreover, this map satisfies the Leibniz
rule, given by the following equation.

δ(α ∪ β) = (δα) ∪ β + (−1)pα ∪ (δβ) (1)

In particular, this means that ∪ sends cocycles to cocylces and coboundaries to
coboundaries, and so is well-defined in cohomology. This map has many nice
properties that are collected in [Bro, §5.3], including being graded-commutative,
associative, unital. The formula in (1) is not hard to prove in general, but
the notation gets extremely cumbersome. Here is a sample computation with
α, β ∈ C1(G;M).

δ(α ∪ β)(g, h, k) = g · (α(h)⊗ h · β(k))− α(gh)⊗ (gh) · β(k)
+ α(g)⊗ gβ(hk)− α(g)⊗ g · β(h)

= g · α(h)⊗ (gh) · β(k)− α(gh)⊗ (gh) · β(k)
+ α(g)⊗ gβ(hk)− α(g)⊗ g · β(h)
+ α(g)⊗ (gh) · β(k)− α(g)⊗ (gh) · β(k)

= δα(g, h)⊗ (gh) · β(k) + (−1)1α(g)⊗ g · δβ(h, k)

=
(
(δα) ∪ β + (−1)1α ∪ (δβ)

)
(g, h, k)

We can use the natural map implied by Lemma 2.7 to find some more
structure in graded group cohomology. In particular, consider three G-modules
M,N,L, and let G act diagonally on M ⊗N i.e. g · (m⊗ n) = (g ·m)⊗ (g · n).
This situation lets us consider some particularly nice graded homomorphisms
of the form H∗(G;M)⊗H∗(G;M) → H∗(G;L).

Definitions 2.8 A pairing of M and N to L is a G-module homomorphism
P : M⊗N → L. The cup product associated to the pairing P is the composition
∪P = H∗(P ) ◦ ∪.

We’ll soon encounter a simple, yet important, example of a pairing. Its as-
sociated cup product plays in important role in the Lyndon-Hochschild-Serre
spectral sequence discussed in section 2.3. For the moment, here are some other
simple examples of cup products.

Examples 2.9

1. Trivially, taking L = M ⊗N , the pairing idM⊗N induces ∪id = ∪.

2. Let M = N = L = R, some ring R, and let G act trivially. The map
(r, s) 7→ rs is a pairing, and the resultant cup product gives H∗(G;M) a
graded ring structure. This is exactly what provides the cup product in the
cohomology ring of a space in algebraic topology, hence the name in the
more general setting.
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2.3 A Spectral Sequence

The main setting I am interested in is that of a group extension by an abelian
kernel. Consider such an extension of G by an abelian A given by the short
exact sequece 1 → A ↪→ Γ ↠ G → 1. It’s a well-known fact (e.g. [Bro, §IV])
that the isomorphism class of Γ is fully determined by the data of an action of
G on A and a class in H2(G;A) that I’ll call the extension class. Up to group
isomorphism, Γ is given by the set A × G and, if c ∈ Z2(G;A) represents the
extension class, the group law is given by (a, g)(b, h) = (a+ g · b+ c(g, h), gh). I
will denote this particular group by A⋊cG and when dealing with an extension
Γ ∼= A⋊c G, I’ll abuse notation by writing γ = (a, g) for γ ∈ Γ.

A useful tool to analyze the cohomology of Γ in terms of G and A is the
Lyndon-Hochschild-Serre (LHS) spectral sequence. Introduced in [HS] for com-
puting the cohomology of a quotient group more generally, it’s quite nice in this
specific setting. If M is some G-module, then since G ∼= Γ/A, it may also be
considered as a Γ-module on which the normal subgroup A acts trivially. Taking
coefficients in M , the E2-page LHS spectral sequence is of the form

Er,s
2 = Hr(G;Hs(A;M))

and the sequence converges to the cohomology of Γ in the sense thatHn(Γ;M) ∼=⊕
r+s=n E

r,s
∞ . In this context, the action G↷Hs(A;M) is induced by the

actions G↷A and G↷M , and is defined at the level of cochains by

(g · f)(a1, . . . , as) = g · f(g−1 · a1, . . . , g−1 · as)

Since A↷M trivially, H1(A;M) = HomGrp(A,M), and so the function A ⊗
H1(A;M) → M given by a⊗ f 7→ f(a) is a well-defined group homomorphism.
Moreover, with the induced action on H1(A;M), this evaluation map is also a
pairing of G-modules. As discussed earlier, this then induces a cup product in
cohomology of the following form.

∪ev : H
∗(G;A)⊗H∗(G;H1(A;M)) −→ H∗(G;M)

In order to prove the result claimed, I’ll need to use a couple facts about the
LHS spectral sequence. To orient ourselves, consider the following portion of
the E2-page corresponding to the short exact sequence 1 → A ↪→ Γ ↠ G → 1.

MG H1(G) · · · ∗ ∗ Hn(G) · · ·

H1(A)G H1(G;H1(A)) · · · Hn−2(G;H1(A)) ∗ ∗ · · ·

...
...

...
...

...
... . .

.

s

...

r. . .0 1 . . . n − 2 n − 1 n

0

1
d2

d2 = 0

where H•(−) is meant to be understood as H•(−;M), and (−)G as H0(G;−),
the d2 arrows are the appropriate differentials, and ∗ indicates some other co-
homolgy groups that aren’t relevant. This is a first-quadrant spectral sequence
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since we take Er,s
2 = 0 when either r < 0 or s < 0. In general, differentials on

the Ek-page are homomorphisms of the following form.

dk : E
r,s
k −→ Er+k,s+k−1

k

Hence in particular, the differentials leaving Er,0
k are all the zero map for any k ≥

2. By definition of page-turning, the bottom row of the sequence in subsequent
pages is then given by the following quotient.

Er,0
k+1 =

ker
(
Er,0

k

dk→ 0
)

im
(
Er−k,k−1

k

dk→ Er,0
k

)
=

Er,0
k

im
(
Er−k,k−1

k

dk→ Er,0
k

)
These quotients give us surjective homomorphisms Er,0

k ↠ Er,0
k+1 for all k ≥ 2.

Portions of the spectral sequence stabilize after the differentials with sources
and targets within this portion are all the zero maps. By inspecting when the
sources of the differentials hitting the bottom row are off the page, it’s clear
that Er,0

r−1 = Er,0
∞ . Moreover, convergence of the LHS spectral sequence says

that there is a homomorphism Er,0
∞ ↪→ Hr(Γ;M). Altogether, there is the

following composition.

Hr(G;M) = Er,0
2 · · · Er,0

r−1 = Er,0
∞ Hr(Γ;M) (2)

In [HS, §III.1], the authors argue that this composition is given by the “lifting ho-
momorphism” Hr(G;M) → Hr(Γ;M) which is the map induced in cohomology
by the surjective homomorphism Γ ↠ G. In particular, a class ω ∈ Hr(G;M)
is lifted to a trivial class if it’s in the kernel of one of these surjections, i.e. ω is
in the image of a differential hitting the bottom row of the sequence.

The last thing I’ll need from the LHS is a formula for the differentials on
the E2-page hitting the bottom row. These are homomorphisms of the form
d2 : H

r(G;H1(A;M)) → Hr+2(G;M). Theorem 4 of [HS, §III] shows that, for
any α ∈ Hr(G;H1(A;M)), its differential is given by d2(α) = −α ∪ev c, where
∪ev is the cup product induced by the evaluation pairing, and c ∈ H2(G;A) is
the extension class. By Definition 2.8, we get the following equation (in M) at
the level of the representative cocycles.

d2(α)(g1, . . . , gr+2) = −α(g1,...,gr)(g1 · · · gr · c(gr+1, gr+2)) (3)

My notation here is that α(g1,...,gr) ∈ H1(A;M) is the image of the map
α : G×r → H1(A;M).

3 Trivializations

Throughout this section, G is some fixed finite group, M a G-module, and
ω : G×n → M is a fixed n-cocycle of G in M . In general, for a group homomor-
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phism ϕ : K → G, I’ll write ϕ∗ := Hi(ϕ;M) : Hi(G;M) → Hi(K;M) so that
e.g. ϕ∗ω = ω ◦ϕ×n, while for a G-module homomorphism f : M → N , I’ll write
f∗ := Hi(G;M) → Hi(G;N) so that e.g. f∗ω = f ◦ ω. The groups or modules
may change, but the pattern will remain the same.

3.1 Main results

The image of ω generates a subgroup Ω := ⟨im(ω)⟩ ⊆ M . The claim I will prove
is that, if Ω is finite and n ≥ 2, then ω may be trivialized in a finite extension
of G by an abelian kernel. More precisely, there is the following theorem.

Theorem 3.1 If |Ω| < ∞, then there exists a short exact sequence of finite
groups

1 A Γ G 1ι π (4)

and a cochain α ∈ Cn−1(G;M) such that A is abelian and π∗ω = δΓα ∈
Zn(Γ;M). In particular, π∗ω = 0 ∈ Hn(Γ;M)

Remark 3.2 Given the extension (4), the inclusion ι : A ↪→ Γ induces a cochain
map ι∗ : C•(Γ;M) → C•(A;M). If π∗ω is trivialized by α, then ι∗α is neces-
sarily a cocycle of A. Indeed, it’s not hard to check

δA(ι
∗α) = ι∗(δΓα)

= ι∗(π∗ω)

= (π ◦ ι)∗ω
= 0

Notice that since |G×n| = |G|n < ∞ and M is abelian, Ω is a finitely-generated
abelian group. Thus, the fundamental theorem of finitely generated abelian
groups implies that |Ω| < ∞ if and only if Ω is torsion. If M is itself torsion,
then Ω is guaranteed to be finite and, in this way, the above theorem immediately
implies the following.

Corollary 3.3 If G is a finite group and M a G-module that is torsion as an
abelian group, then any n-cocycle of G in M for n ≥ 2 is trivializable in an
extension of G by a finite abelian group.

I’ll prove Theorem 3.1 in the next section. In the meantime, assuming it’s
true, we also get the following theorem.

Theorem 3.4 Let M be any G-module, and ω an n-cocycle of G in M with
n ≥ 3, then there is a finite extension Γ̃ of G in which ω is trivializable.

Proof:
Define MT to be the Z-torsion submodule of M , i.e. the sub G-module given
by all elements of M of finite order. Now consider the short exact sequence
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of trivial G-modules (i.e. abelian groups) given by 0 → Z ↪→ Q ↠ Q/Z → 0.
Writing ⊗ = ⊗Z, we can apply the right exact functor M ⊗− to this sequence
and compute the kernel of the left-most map. It’s not hard to show that this is
precisely MT , and so we have the four-term exact sequence 0 → MT ↪→ M →
M ⊗ Q ↠ M ⊗ Q/Z → 0. This decomposes into two short exact sequences as
follows.

0 0

M/MT

0 MT M M ⊗Q M ⊗Q/Z 0

Next, recall from section 2.2 that ZGi is an i-dimensional free Z[G]-module,
and so the covariant functors HomG(ZGi,−) are all exact. We therefore have
two corresponding short exact sequences of cochain complexes. The first is
0 → C•(G;M/MT ) → C•(G;M ⊗ Q) → C•(G;M ⊗ Q/Z) → 0 and yields the
following long exact sequence in cohomology.

Hi (G;M/MT ) Hi(G;M ⊗Q) Hi(G;M ⊗Q/Z)

Hi−1 (G;M ⊗Q/Z)· · ·

Hi+1 (G;M/MT ) · · ·
(5)

Proposition 9.5 in [Bro, §III.9] says that for any subgroup K ⊆ G and G-module
N , there are homomorphisms H•(G;N) → H•(G;N) given by c 7→ [G : K]c and
that this factors through H•(K;N). Taking K = {1} thus implies that |G|c = 0
for any class c ∈ H•(G;N). If N is a vector space over some field containing |G|,
then H•(G;N) = {0} because c = (|G|−1|G|)c = |G|−1(|G|c) = |G|−1(0) = 0
for any c. It’s not hard to show that M ⊗ Q is indeed a vector space over Q,
and thus that Hi(G;M ⊗ Q) = 0 for all i. The exactness of (5) then implies
that Hi(G;M/MT ) ∼= Hi−1(G;M ⊗Q/Z).

Let p : M → M/MT be the quotient map, then p◦ω = p∗ω ∈ Hn(G;M/MT ).
Since M ⊗ Q/Z is torsion as an abelian group, Corollary 3.3 implies that
if n − 1 ≥ 2, then there is a finite extension π : Γ ↠ G of G such that
π∗(p∗ω) = 0 ∈ Hn−1(Γ;M ⊗ Q/Z) ∼= Hn(Γ;M/MT ). The other short ex-
act sequence of chain complexes we’ll need to consider is 0 → C•(Γ;MT ) →
C•(Γ;M) → C•(Γ;M/MT ) → 0. A snapshot of the associated long exact se-
quence in cohomology looks like the following.

Hi (Γ;MT ) Hi(Γ;M) Hi(Γ;M/MT )
j∗ p∗ · · ·· · ·

(6)

By assumption, π∗(p∗ω) = 0, but we also have π∗(p∗ω) = p◦ω◦π×n = p∗(π
∗ω).

This means that π∗ω ∈ ker(p∗) and thus, by the exactness of 6, there is a cocycle
β : Γn → MT such that j∗β = π∗ω, with j : MT ↪→ M the inclusion.
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In particular we have n ≥ 2 and moreover, j∗β is an n-cocycle of Γ in
M whose image generates a finite group. This is precisely the hypothesis of
Theorem 3.1, and so there will be a finite extension π̃ : Γ̃ ↠ Γ of Γ such that
π̃∗(j∗β) = 0 ∈ Hn(Γ̃;M). In turn, this tells us that our original cocycle is also
trivialized here too, since π̃∗(j∗β) = π̃∗(π∗ω) = (π ◦ π̃)∗ω. □

3.2 The Proof of Theorem 3.1

Following [Tac, §2.7], the strategy will be to first trivialize ω in an extension
of G by a free abelian (hence infinite) kernel A. Next, I then tensor A with a
finite cyclic group to get A. The reason we need to assume that |Ω| < ∞ is in
order to actually construct the finite cyclic group in question.

Define A to be the free abelian group generated by symbols {×g,h | g, h ̸=
1 ∈ G}. Alternatively, this may be viewed as first being freely generated by
G×G, and then quotiented by a relation setting ×1,g = ×g,1 = 0 for any g ∈ G.
The reason for this is that A should be the universal target for normalized 2-
cocycles of G. In order to accomplish this, the map c : G × G → A given by
c(g, h) = ×g,h should itself be a 2-cocycle. For this to make sense, we equip A
with a G-action defined by

g · ×h,k = ×gh,k −×g,hk +×g,h

for any g, h, k ∈ G. This is “just-so” so that c satisfies the 2-cocycle condition
(i.e. δc = 0). This G-module A then represents the Ab-enriched functor of
taking 2-cocycles of G.

Z2(G;−) : GMod −→ Ab

Its universal property is then as follows: for any G-module M and any nor-
malized 2-cocycle µ : G × G → M there is a unique G-module homomorphism
φ : A → M making the following the following diagram commute

G×G A

M

c

µ
φ

The G-module A and the class in H2(G;A) represented by c determines an
extension G ∼= A⋊cG of G by A. This is described by the following short exact
sequence.

1 A G G 1
j p

The next step is to show that ω is trivial as an n-cocycle of G in M , which means
that p∗ω represents 0 ∈ Hn(G;M). Here, p∗ is the lifting homomorphism, so
it’s given by the composition (2). Since ω represents a class in Hn(G;M) =
En,0

2 , it would suffice to show that, as the pages of the spectral sequence are
turned, ω eventually gets sent to the kernel of one of the surjections in the
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composition. Fortunately, ω is already killed by the first surjection En,0
2 ↠ En,0

3 .
By definition, this is the same as being in the image of the d2 differential,
i.e. that there exists some b ∈ Zn−2(G;H1(A;M)) representing a class in
Hn−2(G;H1(A;M)) = En−2,1

2 such that

ω(g1, . . . , gn) = (d2b) (g1, . . . , gn)

= −b(g1,...,gn−2) (g1 · · · gn−2 · c(gn−1, gn))

where I used the formula (3) for the differential d2. Incidentally, this is where
the requirement that n ≥ 2 comes into play; if n = 0 or n = 1, then there are no
differentials hitting En,0

k for any k ≥ 2. I’ll show that such a b exists by directly
constructing it, and I’ll do so in two steps. First, let Y be a (n− 2)-cochain of
G with values in H1(A;M) = HomGrp(A,M) that is defined as follows.

Y(g1,...,gn−2)(×gn−1,gn) = −ω(g1, . . . , gn) (7)

This gives a well-defined cochain with values in H1(A;M) by Z-linearly extend-
ing to all of A. Then I define a new cochain by slightly modifying Y in the
following manner.

b(g1,...,gn−2) :=
(
(g1 · · · gn−2)

−1
)
· Y(g1,...gn−2)

Therefore, by construction, d2(b) = ω. All that remains to check is that b is in
fact a cocycle. I’ll show this by using the Leibniz rule (1), and leveraging the
fact that both ω and c are cocycles of G.

0 = −δGω(g1, . . . , gn+1)

= δG(b ∪ev c)(g1, . . . , gn+1)

=
(
δGb ∪ev c+ (−1)n−2b ∪ev δGc

)
(g1, . . . , gn+1)

=
(
δGb ∪ev c

)
(g1, . . . , gn+1)

= (δGb)(g1,...,gn−1)

(
g1 · · · gn−1 · c(gn, gn+1)

)
= (g1 · · · gn−1) ·

(
(g1 · · · gn−1)

−1 · (δGb)(g1,··· ,gn−1)

)
(c(gn, gn+1))

=
(
(g1 · · · gn−1)

−1 · (δGb)(g1,··· ,gn−1)

)
(c(gn, gn+1))

where in the final step, I acted on both sides by (g1 · · · gn−1)
−1, via the G-action

on M . Now, since c(gn, gn+1) = ×gn,gn+1
are generators of A, the above can be

viewed as an equation in H1(A;M) = HomGrp(A,M).

0 = (g1 · · · gn−1)
−1 · (δGb)(g1,··· ,gn−1)

I again act on both sides, this time by g1 · · · gn−1 via the G-action on H1(A;M),
which finally gives us δGb = 0 ∈ Cn+1(G;H1(A;M). Thus b is indeed a cocycle
as required, and we have that p∗ω = 0 ∈ Hn(G;M).

At this point, our task is almost complete. The only thing left to do now is
to make everything finite. This can be done via the exact same argument and
using the same formulas, but replacing A with the finite group A := A⊗Z Z/N
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for some appropriately large natural number N . The reason that N needs to be
sufficiently large is so that the formula (7) defining the cochain Y , and hence
the cocycle b remains well-defined. In particular, Y and b need to actually take
values in H1(A;M) = HomGrp(A,M). Consider a case where N is smaller than
the order of ω(h1, . . . , hn) for some choice of hi’s in G, and denote the generator
of Z/N by 1N . In this case, there is the following contradiction

NY (h1, . . . , hd−2)(×hd−1,hd
⊗ 1N ) = −Nω(h1, . . . , hd) ̸= 0

= Y (h1, . . . , hd−2)(N ×hd−1,hd
⊗1N ) = 0

Since I assume that Ω is finite (and hence torsion), one way to guarantee that
this doesn’t happen is to take N to be the least common multiple of the orders
of non-zero elements in im(ω). In this way, the above contradiction is avoided
since, for any collection of positive integers {ni}ki=1, lcm(n1, . . . , nk) ≥ ni for
any i. Moreover, Nω(g1, . . . , gn) = 0 for any choice of gi’s in G, as is required.

Replacing A ∼= Z(|G|−1)2 with A ∼= (Z/N)(|G|−1)2 , the exact same argument
then proves the theorem.

References

[Bro] K. S. Brown. Cohomology of groups. Vol. 87. Graduate Texts in Math-
ematics. Springer-Verlag, New York-Berlin, 1982, pp. x+306.
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